2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

An Empirical Study towards Characterizing Deep
Learning Development and Deployment across
Different Frameworks and Platforms

Qianyu Guo!, Sen Chen?*, Xiaofei Xie2, Lei Ma?, Qiang Hu?, Hongtao Liut,
Yang Liu?, Jianjun Zhao®, Xiaohong Li'*
LCollege of Intelligence and Computing, Tianjin University, China
2Nanyang Technological University, Singapore 3Kyushu University, Japan

Abstract—Deep Learning (DL) has recently achieved tremen-
dous success. A variety of DL frameworks and platforms play a
key role to catalyze such progress. However, the differences in
architecture designs and implementations of existing frameworks
and platforms bring new challenges for DL software development
and deployment. Till now, there is no study on how various main-
stream frameworks and platforms influence both DL software
development and deployment in practice.

To fill this gap, we take the first step towards understanding
how the most widely-used DL frameworks and platforms support
the DL software development and deployment. We conduct a
systematic study on these frameworks and platforms by using
two types of DNN architectures and three popular datasets. (1)
For development process, we investigate the prediction accuracy
under the same runtime training configuration or same model
weights/biases. We also study the adversarial robustness of
trained models by leveraging the existing adversarial attack
techniques. The experimental results show that the comput-
ing differences across frameworks could result in an obvious
prediction accuracy decline, which should draw the attention
of DL developers. (2) For deployment process, we investigate
the prediction accuracy and performance (refers to time cost
and memory consumption) when the trained models are mi-
grated/quantized from PC to real mobile devices and web
browsers. The DL platform study unveils that the migration and
quantization still suffer from compatibility and reliability issues.
Meanwhile, we find several DL software bugs by using the results
as a benchmark. We further validate the results through bug
confirmation from stakeholders and industrial positive feedback
to highlight the implications of our study. Through our study, we
summarize practical guidelines, identify challenges and pinpoint
new research directions, such as understanding the characteris-
tics of DL frameworks and platforms, avoiding compatibility and
reliability issues, detecting DL software bugs, and reducing time
cost and memory consumption towards developing and deploying
high quality DL systems effectively.

Index Terms—Deep learning frameworks, Deep learning plat-
forms, Deep learning deployment, Empirical study

I. INTRODUCTION

With the big data explosion and hardware evolution over
the past decade, deep learning (DL) has achieved tremendous
success in many cutting-edge domains, such as real-time
strategy game [1], image processing [32], speech and language
processing [33], and autonomous vehicle [22]. The deep neural

*Sen Chen (chensen@ntu.edu.sg) and XiaohongLi (xiaohongli @tju.edu.cn)
are the corresponding authors.

network (DNN) [3] plays a key role behind such recent success
of DL applications. It automatically learns the decision logic
from the training data, which is represented in the form of a
neural network and the connection strengths among neurons.

To transfer the learning theory into practice, a number of
DL frameworks (e.g., TENsORFLow [14] and PYTORCH [49])
are developed towards realizing the demands of intelligent
software. Although most of the existing DL frameworks share
either static or dynamic computation paradigms [31], the
detailed architecture design and implementation of frameworks
are quite different. Actually, even the same DNN architecture
design with exactly the same runtime configuration (i.e., ran-
dom seed for initialization and hyper parameters for training)
might result in different decisions when implemented under
different DL frameworks, which brings new challenges for
DL software development process. Several DL benchmarking
studies have focused on some basic metrics of DL frame-
works [17], [18], [25], [59], such as training and testing accu-
racy, the influence of hardwares (i.e., GPU and CPU), and also
compared different frameworks with their default configuration
settings and training data specific parameters [40]. However,
there lacks an empirical study on the impacts that various
DL frameworks under the same runtime configuration or same
model weigths/biases have on the DL software development
process.

Moreover, with the great demand on deploying the DL
software to different platforms, it further poses new challenges
when DL models on the PC platform are migrated, quan-
tized, and deployed on other platforms such as real mobile
devices and web browsers. While a computational intensive
DL software could be executed efficiently on PC platform with
the GPU support, such DL models usually cannot be directly
deployed and executed on other platforms supported by small
devices due to various limitations, such as the computation
power, memory size and energy. Therefore, some DL frame-
works are specifically designed for mobile platforms, such as
TENSORFLOW LITE [28] for Android and Core ML [16] for
i0S. Similarly, TENsOrRFLOW.Js [29] for web DL applications
is also proposed. Meanwhile, in terms of mobile devices, it
is a common practice that a DL model needs to undergo a
quantization process before the deployment, considering the

978-1-7281-2508-4/19/$31.00 ©2019 IEEE [EEE
DOI 10.1109/ASE.2019.00080 @ Computer
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply. soaety

810

limited resources of memory and energy on mobile devices [8].
There lacks an empirical study focusing on the process of
migration and quantization on mobile and web platforms.

Although the diverse DL frameworks and platforms promote
the evolution of DL software, understanding the characteristics
of them becomes a time-consuming task for DL software
developers and researchers. Moreover, the differences com-
pared with the traditional software brings new challenges for
DL software development and deployment processes. These
challenges include that (1) for the development process, there
lacks a deep understanding of various frameworks under a)
the training and prediction accuracy given the same runtime
configuration; b) the prediction accuracy given the same
model weights/biases; and c) the robustness of trained models.
(2) For the deployment process, when deploying the trained
models from PC/Server to different platforms, there lacks a
benchmarking understanding of the migration and quantiza-
tion processes, such as the impacts on prediction accuracy,
performance (i.e., time cost and memory consumption).

To address the aforementioned challenges, with an over ten
man-month effort, we design and perform an empirical study
on the state-of-the-art DL frameworks and platforms from two
aspects to investigate the following research questions.

(1) As for the development process:

¢ RQ1: Accuracy on different frameworks. Given the same
runtime configuration or same model weights/biases, what
are the differences of training and prediction accuracy when
implemented with different DL frameworks?

o RQ2: Adversarial robustness of trained models. Do DL
models trained from different DL frameworks exhibit the
same adversarial robustness against adversarial examples?

(2) As for the deployment process:

« RQ3: Performance after migration and quantization.
What are the differences of performance (i.e., time cost and
memory consumption) in the capabilities of supporting DL
software when migrating or quantizing the trained models
to the real mobile devices and web browsers?

o RQ4: Prediction accuracy after migration and quan-
tization. Given the same trained DL model, what is the
prediction accuracy of the migrated model for mobile and
web platforms? How do quantization methods influence the
prediction accuracy of quantized model on mobile devices?

Through answering these research questions, we aim to
characterize the impacts of current DL frameworks and plat-
forms on DL software development and deployment processes,
and provide practical guidelines to developers and researchers
from different research communities such as SE and Al fields
and under different practical scenarios.

In summary, we make the following main contributions:

« To the best of our knowledge, this is the first empirical study
on how the current DL frameworks and platforms influence
the development and deployment processes, especially for
the study on the migration and quantization processes on
different DL platforms.

811

o For the development process, we find the computing dif-
ferences across frameworks might result in an obvious
prediction accuracy decline. That would be a great warning
to the DL developers and SE testing researchers. Our fur-
ther investigation finds the adverarial robustness of trained
models from different frameworks is also different.

o For the deployment process, 6 real mobile devices and 3
web browsers have different performance in capabilities of
supporting DL software. Mobile platforms have a better
prediction accuracy of migration than that of current web
platforms, and the web platforms have an obvious compat-
ibility issue (i.e., prediction accuracy drops over 5%). We
find a real bug according to the phenomenon and report
to the stakeholders. It is confirmed and appreciated by
developers. More bug information can be found on our
website [4]. Moreover, the quantization of mobile platforms
suffer from significant reliability issues on our generated
testing dataset, and it is hard to trigger such issue by the
widely-used original testing data. That would motivate the
SE researchers to conduct a further test in this field.

« We also conduct an online questionnaire [9] to validate the
usefulness of our study, and receive 20 industrial positive
feedback from the AI research teams in Baidu China,
Huawei Signapore, and NetEase China, which confirms the
usefulness of our study. In addition, we make all generated
testing dataset used in our evaluation on migrated and
quantized models publicly available [4], to facilitate further
study towards more systematic investigation.

« We highlight the challenges and propose new research
directions. Meanwhile, our empirical study can be used as
a benchmark and baseline for issues and bugs detection to
evaluate new DL frameworks and platforms.

II. BACKGROUND

In this section, we briefly introduce the current practice of
DL software development and deployment.

A. DL Software Development

DL software development contains several phases (e.g., data
collection and labelling, DNN design, runtime training, and
testing/validation). DL developers design the DNN architec-
ture and specify runtime configuration (e.g., random seed and
hyper parameters) before training on selected dataset. It is a
common practice that using the state-of-the-art DL frameworks
to accomplish training, followed by the validation/testing stage
for accuracy evaluation on the trained models.

B. DL Software Deployment

A DL software, that has been well tested and validated
and reaches a certain level of quality standard, is ready to
be deployed for application (e.g., web and mobile platforms).
Developers need to consider calibration (e.g., migration and
quantization) when deploying DL software across different
platforms.

For web platform, several solutions (e.g., TENSORFLOW.JS)
are proposed for deploying DL models under the web envi-
ronment. For mobile platform, although the rapid advances

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

« LeNet-1
* LeNet-5

* ResNet-20
« VGG-16

. LSTM (RNN)]

! Migration

I:CTram Trained
DL Models

* GRU (RNN)
* TextCNN

Web Migrated
Models
% Mobile Migrated |'
Models

Platforms

Quantization

Quantized
Models

Research
Direction

1
]
I
I
i
I
! Benchmark
I
I
I
I
i

Android

(b) Deployment 1 (c) Research Outputs

___ |

s B Microsoft Frameworks
[¥ b CNTK @xnet]
- (a) Development
RQ1 RQ2 RQ3
Accuracy in

Training & Prediction Adversarial Robustness

Time/Memory Consumption
after Migration & Quantization

RQ4
Prediction Accuracy
after Migration & Quantization

Fig. 1: Overview of our study

in system-on-chip (SoC) [52] [66] [56] facilitate the Al
applications for mobile use, existing trained DL models on PC
could still not be directly deployed on mobile devices, due to
the limitations such as computing power, memory size and en-
ergy capacity. Some lightweight solutions (e.g.,TENSORFLOW
LiTE and CORE ML) are proposed to support this migration.
Moreover, it is a common practice to conduct a quantization
process before deploying DL models on mobile devices, so as
to reduce memory cost and computing overhead [8].

TENSORFLOW provides two options for quantization (i.e.,
post-training quantization [62] and quantization aware train-
ing [63]), both of which fixedly convert model weights to 8-
bits integers from floating points, using a linear weights repre-
sentation. CORE ML supports flexible quantization modes [53]
(i.e., linear, linear_lut, kmeans_lut, and custom_lut), along
with a nbits option, which allows to customize the bits of
per quantized weight (e.g., 32-bits to 16/8/4-bits).

III. OVERVIEW

In this section, we briefly introduce the overview of our
study and the evaluation objects and metrics.

A. Study Design

Fig. 1 shows the overview of our study, which contains
two main phases (i.e., development and deployment) to answer
the four research questions. For the development process, we
investigate the training and prediction accuracy and adversarial
robustness of trained models across different frameworks. To
achieve these goals, we select 4 widely-used frameworks
(i.e., TENSORFLOW [14], PYTorcH [49], CNTK [57], and
MXNET [23]) as our evaluation objects, and use 3 publicly
available datasets (i.e., MNIST, CIFAR-10, and IMDb) for
training and prediction on each of them. Correspondingly,
we choose 7 popular DNN models (i.e., LeNet-1, LeNet-
5 [37], RestNet-20 [32], VGG-16 [61], TextCNN [11], LSTM
(RNN) [7] and GRU (RNN) [5]) for inspection, including
CNN and RNN architectures.

For the deployment process, we focus on the model perfor-
mance and prediction accuracy after migrated and quantized
to different platforms. To conduct these evaluations, 2 popular
platforms are selected to evaluate (1) 3 popular web browsers

812

(Chrome, Firefox, and Safari); and (2) 6 real mobile devices:
3 Android devices (i.e., Nexus 6, Nexus 6P, and HUAWEI
Mate 20X) and 3 iOS devices (i.e., iPhone 6S, iPhone 8,
and iPad Pro). We migrate and deploy the models trained
in the development process to the two types of platforms.
Meanwhile, we follow the common practice to further conduct
model quantization for mobile devices to investigate their
performance and prediction accuracy.

B. DL Frameworks and Platforms

DL frameworks play an important role to bridge the DL the-
ory to the practice of DL software. We select the most updated
versions of four representative frameworks (i.e., TENSORFLOW-
1.12.0 from Google, PYTorcH-0.4.1 from Facebook, CNTK-
2.6 from Microsoft, and MXNET-1.4.0 maintained by Apache)
for investigation, where TENSORFLOw and CNTK adopt the
static computational graph paradigm, while PYToRcH follows
a dynamic computational paradigm. MXNET adopts both two
types. We investigate three DL platforms, where an urgent
demand on DL software solutions exists from industry. (1) PC,
the mainstream platform where most DL models are trained.
(2) Mobile platform such as Android and iOS mobile devices.
(3) Web platform (i.e., Chrome, Firefox, and Safari).

C. Datasets and DNN Models

In order to conduct our study, we select three publicly
available datasets (i.e., MNIST [38], CIFAR-10 [36], and
IMDb [6]) for training and prediction, all of them are widely
used in DL community. For each dataset, we follow the best
DL practice and choose diverse DNN models (i.e., LeNet-1,
LeNet-5, RestNet-20, VGG-16, TextCNN, LSTM (RNN) and
GRU (RNN)) that are able to achieve competitive results in
terms of training and testing accuracy. We detail the hyper-
parameters of each DNN model on specific dataset on [4].

MNIST is a collection of gray-scale images used for hand-
written digit recognition. For MNIST, we use two well-known
models from the LeNet family (i.e., LeNet-1 and LeNet-
5 [37]). CIFAR-10 is a collection of colored images (e.g.,
airplane, automobile, and bird) for object classification. For
CIFAR-10, we select two popular DNN models (i.e., ResNet-
20 [32] and VGG-16 [61]) for inspection, both of which could

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

achieve competitive prediction accuracy. IMDb is a collec-
tion of text-based movie reviews from the online database
IMDb [6], which is widely used for text sentiment classifica-
tion in the field of natural language processing. As for IMDb,
we select a CNN-based model TextCNN [11] and an RNN-
based model TextRNN for inspection, both of which are clas-
sical models in NLP. There are two types of implementations
for TextRNN (i.e., LSTM [30] and GRU [24]).

D. Evaluation Metrics

Accuracy in Training and Prediction. At the training stage,
we first ensure the same runtime configuration across dif-
ferent frameworks. Then we train the models with multiple
combinations of hyper parameters on these frameworks, and
evaluate the training and validation accuracy in this stage.
We select one combination as example shown in this paper,
which achieves comparable training accuracy for all selected
frameworks. For prediction stage, we evaluate the accuracy
and time cost using the testing data. Particularly, to investigate
the computing difference of different frameworks, we further
ensure the same weights/biases of the same model by using
MMDNN [45] across different frameworks, and evaluate the
prediction accuracy.

Adversarial Robustness. Robustness indicates the quality and
security of the trained DL models [34], [41]. We focus on
a typical robustness property adversarial robustness in this
paper. The adversarial robustness concerns whether there exists
an example z’ (close to a given input x) that x and z’ are
misclassified by the DNN. Such z’, once exists, is called an
adversarial example of x and the DNN is not adversarial
robust at z. Formally, a DNN’s adversarial robustness could be
analyzed by checking the d-local-robustness at an input x w.r.t
a distance parameter d if we have the following relation [34]:

Vo' i ||’ —z|| < d = C(z) = C(z)),

where x could be correctly predicted by the DNN. We follow
the currently best practice in machine learning [21] to generate
adversarial examples by exerting adversarial attacks [27] [48]
[20] on DL models.

Accuracy and Performance in Migration and Quantization.
It is common that a DL model with complex structure could
achieve competitive results on PC or cloud, but inevitably
introduce large computing and memory overheads at the same
time. When DL models are migrated from PC to web and mo-
bile platforms, we observe the accuracy and performance (i.e.,
time cost and memory consumption) change in this process.
Moreover, to deploy such DL models on the resource-limited
mobile devices, quantization is a common practice to ensure
the smooth running [8]. We study how quantization technique
influences the accuracy and time cost in prediction.

IV. EMPIRICAL STUDY

In this section, we first briefly introduce the experimental
environment for our study, and then we detail the numerous
experiments to answer the 4 research questions highlighted in
Section I.

813

(1) For the development study, we train 7 DL models
on 3 types datasets using 4 DL frameworks, respectively.
We use multiple combinations of hyper parameters for each
model in the training stage, aiming to obtain a relatively
good training accuracy on each framework and avoiding over-
fitting/under-fitting as much as possible. Meanwhile, we repeat
each model training and testing processes 5 times. (2) For the
deployment study, 7 trained models from TENSORFLOW are
migrated and executed on 3 web browsers, and 4 of them
are also converted to mobile devices. 6 real mobile devices
including Android/iOS devices are selected to run the 4 mi-
grated/quantized models. For each web browser/mobile device,
we conduct 5 parallel evaluations on each model to minimize
the random impacts as much as possible. The study takes
10 months, including the substantial effort on model training,
migration/quantization, and cross-platform evaluations.
Experimental Environment. We run all the PC application
experiments on a high performance computer cluster. Each
cluster node runs a GNU/Linux system with Linux kernel
4.4.0 on 2 18-core 2.3GHz Intel Xeon CPU E5-2699 with
190 GB RAM equipped with a NVIDIA Tesla P40 GPUs.
Web application experiments are conducted on a laptop with
64-bit Chrome 71.0.3578.98, Firefox 64.0.2 and Safari 12.0.2.
The host laptop is MacBook Pro with macOS 10.14.2 on a
2.7GHz Intel Core i7 CPU with 16GB RAM. The mobile
application experiments are conducted on real Android devices
(i.e., HUAWEI Mate 20X, HUAWEI Nexus 6P, and Motorola
Nexus 6) with Android 9.0 API 28, 7.1.1 API 25 and 8.1.0
API 27 and iOS devices (i.e., iPhone 8, iPhone 6S, and iPad
Pro) with i0S 12.1.2.

A. RQI: Accuracy on Different Frameworks

1) Training Accuracy: To investigate the training accuracy
across different DL frameworks, 7 DNN models (i.e., LeNet-
1 and LeNet-5 for MNIST, ResNet-20 and VGG-16 for
CIFAR-10, TextCNN, LSTM (RNN), and GRU (RNN) for
IMDb) are trained on four different frameworks. For each
model, we ensure the same runtime configuration on different
frameworks. For example, we set identical learning rate (i.e.,
0.05), training epochs (i.e., 200), optimizer (i.e., SGD), batch
size (i.e., 128), etc. for LeNet-1 on all frameworks. Each DNN
model is repeatedly trained for 5 times under each framework,
and one with the highest validation accuracy is selected for
comparison. We only demonstrate the accuracy of training and
prediction by using 3 DNN models (i.e., LeNet-5, VGG-16,
and GRU (RNN)) based on three data types due to the space
limitation. More training plots can be found on our website [4].

Fig. 2 and 3 show the training and validation plots of LeNet-
5, VGG-16, and GRU (RNN) on GPU with the same runtime
configurations under different DL frameworks, respectively.
We can see that all frameworks exhibit similar training be-
haviours, but PYTORCH behaves more stably in both training
and validation processes and generally has higher training
accuracy compared to the other 3 frameworks in our study. It
is even more obvious for LeNet-5 and VGG-16, which have

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

o 5 s 75 10 15 10 15 20 0 0
Epochs

(a) LeNet-5

(b) VGG-16

Fig. 2: Training accuracy of LeNet-5, VGG-16, and GRU with
different DL frameworks

(¢) GRU

T & % % W s % 1 @
Epochs

(a) LeNet-5

(b) VGG-16
Fig. 3: Validation accuracy of LeNet-5, VGG-16, and GRU
with different DL frameworks

(¢c) GRU

much larger amplitudes on these frameworks than PYTORCH,
as shown in Fig 2a, 2b and Fig 3a, 3b, respectively.

2) Prediction Accuracy: For each DNN model, we select
one with the highest validation accuracy to conduct prediction
on the testing dataset. We repeat 5 predictions on each model
and find the prediction accuracy is quite similar, with time
costs varying slightly. So we record the average accuracy and
average time cost for evaluation.

As shown in Table I, for each model, the prediction accuracy
of 4 frameworks is similar with a little difference. The result
is reasonable because these frameworks rely on different
computing libraries and provide different operator implemen-
tations (e.g., convolution operator), which finally makes the
weights/biases on the same layer different from each other. But
when it comes to time costs, models on the four frameworks
behave quite differently. We take GRU as an example (marked
in gray), it takes only 3.46 seconds on MXNET to predict
10,000 samples, but spends 85.88s and 114.69s on TENSOR-
FLow and CNTK, respectively. Meanwhile, it exhibits an out of
memory error under PYTORCH, as marked by O/M in Table L.
This is mainly because PYTorcH dynamically loads the data
along with the graph building at each batch, without feeding in
advance. Thus, PYTORCH inevitably generates a large number
of temporary variables in an instant, leading to the memory
overflow. According to the results of prediction accuracy
and time costs, even given the same configuration, models
under different frameworks achieve different weights/biases,
resulting in different prediction accuracy and time costs. This
phenomenon inspires us to think if the difference is caused by
the inner implementation when conduct computing.

Driven by the above observations, we further investigate
the prediction accuracy of different frameworks with the same
weights/biases rather than the same runtime configuration.
Specifically, we take the TENSORFLOw models as benchmark,

814

TABLE I: Average prediction accuracy and average time costs
with input data samples 10,000 on different frameworks

DNN TensorFlow CNTK PyTorch MXNet
Models |[Acc(%) [Time(s) | Ace(%) [Time(s) | Ace(%) [Time(s) | Ace(%) [Time(s)
LeNet-1 | 98.90 0.05 98.89 0.96 98.88 0.01 98.96 0.11
LeNet-5 | 99.30 0.10 99.30 1.02 99.21 0.01 99.27 0.12

ResNet-20 | 82.66 1.23 82.93 3.94 83.85 O/M 84.33 1.47
VGG-16 | 84.70 3.67 82.77 11.82 | 86.12 O/M 86.52 8.86
TextCNN | 89.54 2.10 89.98 2.14 89.79 1.12 90.40 1.58
LSTM 90.11 | 103.93 | 90.50 | 55.60 | 90.56 O/M 89.17 3.60
GRU 90.73 | 85.88 | 90.92 | 114.69 | 91.59 oM 89.80 3.46

TABLE II: The layer outputs in ResNet-20 on TENSORFLOW
model and CNTK variant. Idx. refers to label index.

(a) Activation_1 Layer (b) Dense Layer (Last Weight Layer)

[TensorFlow [CNTK [Idx. | TensorFlow | CNTK

250329142 | 2.50329163 0 5.7574983 1.9206836

0.0 0.0 T 2.6037812 | -0.5768703

5 [407436941 | 4.07436941 5 2 -0.6758407 1.2657206
g 0.0 0.0 g- 3 1.3866315 | 0.73824847
) 0.0 0.0 S| 4 3348287 | -0.97601014
5 EE XK 5 5 -49494123 | -3.5435727
= 0.0 0.0 | 6 28659112 | -1.4083405
= | 3.72458271 | 3.72458232 ~ 7 4317035 2.079543
0.62817883 | 0.62817895 8 4.1992025 4.9673457
1.00697954 | 1.00697954 9 22098625 | -0.3072039

and further convert them to variants fit for other frameworks,
using the existing model conversion tool MMDNN [45]. The
outputs (i.e, the 3 variants) of MMDNN are able to share
identical weights/biases with the benchmarking TENSORFLOW
for each DNN model. Then we conduct predictions on them
using the same testing dataset. Most of the prediction accuracy
across the four models are the same, but an obvious accuracy
decline (i.e, 82.66% to 74.35%) occurs on ResNet-20 after
converted from TENSORFLOW to CNTK.

To understand the reason, we sample the images that have
inconsistent classification results by ResNet-20 on TENSOR-
FLow and CNTK. Taking these samples as inputs for the
two models, we print the outputs of their each hidden layer.
Strikingly, the outputs of each corresponding layer in the two
models are gradually diverging as the layer deepens. As shown
in Table Ila, for Activation_1, the first activation layer,
there are only slight differences between TENSORFLOW and
CNTK (see the pair data marked by gray). When it comes
to the Dense layer (i.e., the last weight layer), the two
frameworks exhibit an obvious distinction, leading to diverging
classification. Consider the Table IIb, the TENSORFLOW model
predicts the image as label “0,” with the maximal output being
“5.7574983.” While the CNTK variant predicts it as label 8,
with the maximal output being “4.9673457.” Actually, we also
find similar issues between other frameworks, but not obvi-
ous enough to impact the prediction logic. The phenomenon
indicates that computation differences indeed exist between
TENSORFLOW and CNTK, which could be amplified in models
with deep layers, and introduce prediction errors. That should
draw the attention of developers and researchers who aim to
train a model on a framework and deploy on another with the
help of model conversion tools.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

Answer to RQ1: Given DL models with the same runtime
configuration, PYTORCH generally provides more stable
training and validation process than TENSORFLOW, CNTK,
and MXNET in our study. Although it is understandable
that the computing differences exist across frameworks,
such differences can sometimes be very obvious under
certain scenarios (e.g., model conversion), leading to a
misclassification on DL models. The existing model con-
version between frameworks is currently not reliable due to
the computing differences, which requires special attention
and inspection before applying directly. Note that, 100%
participates in the questionnaire are interested in the quanti-
tative differences across frameworks and the corresponding
results can be used to provide development insights.
Challenge: How to identify real framework bugs according
to the computing differences? How to amplify the comput-
ing differences to help find more similar issues in SE testing
field?

B. RQ2: Robustness of Trained Model

In this section, we investigate the robustness of DL models
trained from different DL frameworks. For each model evalu-
ated in Table I, we examine the robustness against adversarial
examples in terms of success rate, by leveraging three state-
of-the-art representative adversarial attacks (i.e., FGSM [27],
Single-Pixel-Attack [48], and Boundary-Attack [20]). Given
an input, each attack generates crafted test cases to fool the
model, with following criteria:

o FGSM adds perturbations along the model’s gradient to craft
adversarial examples.

« Single-Pixel-Attack adds human-unnoticeable noises on im-
age pixel to generate adversarial images.

« Boundary-Attack firstly performs large adversarial perturba-
tions on input and then minimizes the Ly-norm of pertur-
bations while staying adversarial.

In particular, we randomly select 1,000 images in MNIST
and CIFAR-10, which are correctly predicted by all the mod-
els. And these images are used as the inputs of aforementioned
attacks. To reduce randomness, each attack is repeated 10
times to calculate the average success rate. Thus, we perform
360 configurations of attacks (4 modelsx 4 frameworks x 3
types of attacks x 10 repetitions).

Fig. 4 shows the average attack success rates on models
trained from different frameworks. We can see Boundary-
Attack achieves 100% success rate on all DL models, because
it is the most effective decision-based adversarial attack [54]
to date. This indicates that models trained from the state-of-
the-art frameworks are still vulnerable against the advanced
attacks [20]. Moreover, models also behave distinctly against
other two attacks. Formally, we define the following equations
to quantify the model robustness under attacks.

SVt —min .
P(my, A) = {mflz_mm m?n < max 0
0 min = mazx
R(mz) :P(TrL”A1)++P(m“Ak)7 kz 1 (2)

815

where my,...,m, (n > 1) represent the n models trained
from different frameworks, and Aj are the k types of at-
tacks. S’{' represents the average success rate of attack A
on model m. Thus the min = MIN(SY*,...,S3™) and
max MAX(SY,...,S%™) in Equation 1 indicate the
minimum and maximum success rate of all models involved
under attack A, respectively. Based on these statistics, we can
compute the final robustness indicator R(m;) with Equation 2,
which quantifies the robustness of model m; in terms of
attacks Aj,..., A,. The smaller value R(m;) is, the better
robustness model m; exhibits. In this study, mi, mg, ms, my
represent models from TENSORFLOW, PYTORCH, CNTK, and
MXNET, respectively. And A;, As, A3 indicate FGSM attack,
Single-Pixel attack and Boundary attack, respectively.

Using above equations, we find that trained from the same
runtime configurations, the CNTK models generally exhibit
the best robustness compared to the models from the other
three frameworks. Because R(mgs) comes to the minimum on
LeNet-1, LeNet-5 and VGG-16, with the value being 0.01,
0.00 and 0.02, respectively. By contrast, PYTORCH and MXNET
are more vulnerable to attacks by adversarial samples. More
results can be found on our website [4].

Answer to RQ2: Given the same architecture design and
runtime configuration, DL models from different frame-
works exhibit diverse robustness against adversarial attacks.
Generally, CNTK achieves the most robust result in our
evaluated settings among all the frameworks when training
DL models, and models trained from PYToRCH and MXNET
tend to be more vulnerable to adversarial attacks.
Challenge: How to improve the robustness of DL models
in training stage from the perspective of engineering DL
frameworks? How to develop advanced testing techniques
to generate specific tests for improving robustness?

C. RQ3: Time and Memory Performance of Migration and
Quantization on Diff-Platforms

In this section, we investigate the differences of capability in
supporting DL software across platforms, after the model mi-
gration/quantization from the PC/Server platform. We mainly
focus on the time costs and memory consumption during
prediction, which are the key runtime metrics of small devices.
The mobile platforms (e.g., Android OS and iOS systems) and
web platforms (e.g., web browsers) are selected for evaluation.

For the mobile platform, TENSORFLOW and CORE ML are
used to migrate the trained DL models to Android and iOS
platforms, respectively. Specifically, for each DNN model
trained by TENSORFLOw, we select one with the highest
prediction accuracy. After that, the APl TocoConverter
in TENSORFLOw 1.11.0 helps migrate these trained models to
the Android platforms, and the TENSORFLOW LITE package
in Android applications provides runtime support for the
migrated model execution on Android devices. Similarly, the
coremltools in CORE ML 2.1.0 can convert the trained
models to the iOS platforms.

Apart from the model migration, TENSORFLOW and CORE
ML also provide quantization techniques to optimize a model

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

100 100 100100 o7

100 100 100100

_100 _100 A
S g g
280 280 2
¢ & &
2 60 % 60 2
8 8 8
So m 340 3
7] L2 7]
2 29 29 < " 28 %
S20 £20 17 8
<

< 43 4 4 4.3 4 2 <

[

FGSM Single-Pixel Boundary F Single-Pixel Boundary
M TensorFlow M PyTorch M CNTK I MXNet M TensorFlow M PyTorch M CNTK M MXNet
(a) LeNet-1 (b) LeNet-5

00 100100 100 100 98 100 100 100100 100 99 100 99 100 99 100 100 100100
g
80 280
68 K] 66
60 58 260 55 W 56
45 g
40 240
x
§20
20
g
FGSM Single-Pixel Boundary FGSM Single-Pixel Boundary
Il TensorFlow M PyTorch H CNTK [MXNet [TensorFlow [PyTorch M CNTK [MXNet
(c) ResNet-20 (d) VGG-16

Fig. 4: The robustness evaluation of DL models against adversarial attacks

so that it can execute faster and more efficiently on mobile
devices [8]. TENSORFLOw and CORE ML provide different
options to quantize the trained models for mobile platforms.
Since the post-training quantization is recommended as prior-
ity by the documentation of TENSORFLOW [62], and it fixedly
converts weight in trained models from 32-bits floating point
to 8-bit integer using a liner weight representation. We initially
set the nbits option to 8 and select the linear mode in CORE ML
for all DL models to ensure the consistency. Additionally, since
the VGG-16 model cannot be quantized to 8-bits in practice
[10], we only use a 16-bits quantization for VGG-16. In this
study, 6 representative real mobile devices (i.e., HUAWEI
Mate 20 X, HUAWEI Nexus 6P, and Motorola Nexus 6 with
Android OS and iPhone 8, iPhone 6S, and iPad Pro with iOS)
are selected for evaluation.

For the web platform, TENsORFLow.Js 0.14.2 is used to
migrate the trained TENSORFLOW models to the format which
could be loaded by web browsers. The web platform refers to
the browsers on PC, rather than on mobile devices. We select
3 mainstream browsers (i.e., Chrome, Firefox, and Safari) for
web evaluation, and run them on a Macbook Pro.

Table III, IV, and V show the results of prediction accuracy
and time cost on different platforms and the effects of migra-
tion and quantization for mobile devices and web browsers.
For mobile platforms, four CNN models are evaluated, be-
cause we cannot convert the RNN models (i.e., LSTM and
GRU) to mobile platforms due to the “unsupported operation”
error [12], which indicates that the current supporting of DL
tasks on mobile platforms is unfledged. Note that quantization
is only performed on mobile devices in our study, because
there is no quantization support for web platforms until now.
For web browsers, all the seven trained DL models are selected
to migrate. We record the System Memory consumption in
prediction process. Notably, we do not record the system
memory consumption and energy of mobile devices since the
record process is inaccurate due to many limitations such as
the impacts of mobile system and runtime environment.

1) Time Performance: For mobile platform, Android and
i0S devices exhibit different time performance which depends
on DL model type. As shown in Table III (Column Pred.
Time), for the LeNet-1 and LeNet-5, there is a big difference
in time performance on iOS and Android devices. Android
devices take less than 9s to predict while iOS devices spend

816

TABLE III: Prediction accuracy and time cost on different
mobile devices

DNN . Original Generated
Mod Plat. Device Quan. Size Acc. Pred. Acc.
. (%) | Time(s) (%)
PC Server No 16KB | 98.70 | 0.05 8742
Nexus 6 No T5KB | 9870 | 533 8742
- Yes | 54KB | 98.69 [3.80 82.32
2 [Newws op N0 I5KB | 98.70 | 4.19 8742
2 Yes | 54KB | 98.69 [332 82.32
3 < Mate 20X |_No T5KB | 98.70 | 2.09 8742
Z Yes | 54KB | 98.69 | 1.51 82.32
3) No T4KB | 98.70 | 235.66 8651
iPhone 6S 57— sKB 08,70 | 23827 81.46
0s | iPhome 8 |_NO T4KB | 9870 | 121.78 86,54
Yes | 4.5KB | 98.65 | 123.56 81.49
Pad Pro |_No T4KB | 9870 | 145.92 86,51
Yes | 45KB | 98.66 | 147.41 81.46
PC Server No | 178KB | 99.13 | 0.10 89.24
Nexus 6 No | 176KB | 99.13 | 831 39.24
g Yes | 50KB | 99.13 | 530 83.31
'g Nexus 6P L_NO T76KB | 99.13 | 6.16 89.24
2 Yes | 50KB | 99.13 | 4.26 83.31
© < Mare 20X |_No_ | T76KB [99.13 | 5.8 89.24
zZ ate Yes | 50KB | 99.13 | 1.I7 83.31
3 . No | 175KB | 99.13 | 245.62 88.87
08 iPhone 68 | —7——77KkB [99.13 | 248.92 82.96
Phone 8 |_No__| T75KB | 09.13 | 12884 88.96
Yes | 47KB | 99.09 | 130.47 83.04
pad Pro |_NO__| T75KB [99.13 | 15347 83.87
Yes | 47KB | 99.09 | 153.70 81.61
PC Server No 1.IMB | 83.05 1.23 77.70
Nexus 6 No | I.IMB | 83.05 | 56530 7770
o Yes | 290KB | 83.06 | 320.41 73.49
2 [Nexuws op |_No | L.IMB | 8305 | 49521 7770
- 2 exus Yes | 290KB | 83.06 | 262.24 73.49
@ < Mate 20X |_No | L.IMB | 8305 | 24067 77.70
2 ate Yes | 200KB | 82.93 [113.05 73.49
£ Phone 65 |_No | LIMB | 83.09 | 37473 76.28
Yes | 281KB | 83.05 | 383.49 72.15
05 | iPhone § |_No_| TIMB | 83.04 | 22423 77.03
Yes | 281KB | 83.02 | 229.41 72.86
Pad Pro |_No | LIMB | 8308 | 23035 76.26
Yes | 281KB | 83.06 | 232.78 72.13
PC Server No | 129MB | 8420 | 3.67 79.25
Nexus 6 No | 120MB | 84.20 | 2432.51 7925
o Yes | 33MB | 84.19 [823.15 75.28
2 [Nexus 6p |_No [129MB | 8420 | 2909.95 79.25
. z ; Yes | 33MB | 84.19 [1996.54 75.28
= Mate 20X |_No__| T29MB | 84.20 | 159582 79.25
< Yes | 33MB | 84.19 [322.60 75.28
54 Phone 65 |_No__| 129MB | 84.19 | 1699.90 7754
Yes | 65MB | 84.22 | 1768.87 77.56
05 | iPhone § |_No_| 129MB | 8421 | 114395 79.05
Yes | 65MB | 8421 | 1210.45 78.93
Pad Pro |_No_| T29MB | 8419 | 939.63 7755
Yes | 65MB | 8422 | 964.00 77.57

DNN Mod.: DNN models; Plat.: platform; Quan.: quantization; Acc: accuracy; Pred.
Time: prediction time; Original: original dataset; Generated: generated dataset

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

TABLE 1V: Prediction performance of DNN models on
MNIST and CIFAR-10 with different web browsers

TABLE V: Prediction performance of DNN models on IMDb
with different web browsers.

Original Data Generated Data Original Data
1]\)413(1;1 Plat. | Size |Browser | Acc. [Pred. | System | Acc. | Pred. | System I\/I[)(:l:ls Platform Né(i];i:l Browser | Accuracy Pred. System
B (%) | Time | Memory | (%) | Time | Memory (%) Time (s) Memory

- PC | 52KB - 98.90 | 0.05 - 79.37| 0.09 Z PC 40MB - 89.54 2.10 -
] Chrome | 98.90 | 0.68 - 79.37| 2.14 5 Chrome 89.54 65.57 253.65MB
% | Web | 20KB [Firefox [98.90| 132 - 79.37] 2.68 ‘5 Web 13MB Firefox 89.54 67.52 417MB
= Safari [98.90 [0.99 - 79.37| 2.92 = Safari 89.54 69.33 1.07GB
[PC | 380KB - 99.30 | 0.10 - 78.60 | 0.16 PC 48MB - 90.11 103.93 -
] Chrome [99.30| 0.93 - 78.60 | 2.59 E Chrome 90.11 248.37 210.2MB
% | Web | 184KB [Firefox [99.30] 1.72 - 78.60 | 3.15 i Web 16MB Firefox 90.11 375.20 1.24GB
— Safari [99.30 | 1.44 - 78.60 | 3.52 Safari 90.11 260.49 1.83GB
S PC | 2.4MB - 82.66 | 1.23 - 68.97 | 1.85 - PC 45MB - 90.73 85.88 -
< Chrome | 77.08 | 22.80 | 2.41GB | 61.96 | 31.07 | 2.46GB a Chrome 90.73 284.62 232.9MB
Z | Web | 1.IMB | Firefox | 77.08 [25.22 | 3.52GB | 61.96 [42.41 - &} Web 15MB Firefox 90.73 471.81 1.37GB
& Safari |77.08 | 79.92 | 4.37GB | 61.96 | 81.72 | 6.49GB Safari 90.73 191.45 1.64GB
° PC |258MB - 84.70 | 3.67 - 67.60 | 3.95 *
o) Chrome [84.70[139.83 [2.06GB [67.60 [167.50 | 2.52GB
O | Web | 129MB | Firefox |84.70 | 153.08 | 3.30GB [67.60 | 300.85 * .
> Safari [84.70 [156.74 | 4.66GB [67.60 [490.46 | 8.69GB record the correspondlng system memory.

Mod.: models; Plat.: platform; Size: model size; Acc: accuracy; Pred. Time: prediction
time(s); Mem.: Memory
* means the exception on Firefox due to “allocation size overflow.”

more than 100s, and even up to 248.92s (i.e., iPhone 6S
for LeNet-5). Different from the LeNet family, iOS devices
predict faster than Android devices for ResNet-20 and VGG-
16. It seems that as the complexity of the model increases, the
performance advantage of iOS devices gradually emerges.

In terms of the prediction time of quantized models, pre-
dicting on Android devices after quantization is faster than
the original model, the improvement is more obvious for
complex models (e.g., ResNet-20 and VGG-16). Strikingly,
quantization on iOS slows down the prediction speed a little
as shown in Column Original-Pred. Time (in gray) in Table III,
which is an overall trend and confused phenomenon. Note that,
we have reported the issue to CORE ML.

As shown in Table III, we use two types of mobile devices
(i.e., Nexus 6 and Nexus 6P) to observe the time performance.
Most cases reflect the trend (i.e., Nexus 6P is an upgraded
version of Nexus 6, therefore, the prediction time on Nexus 6P
should be less than Nexus 6.). However, as shown in Column
Original-Pred. Time (in bold italic), Nexus 6P spends more
time than Nexus 6 when running VGG-16, which indicates
the platforms’ capability of supporting DL software is likely
related to specific model type.

For the time on web browsers, Chrome generally outper-
forms the other two browsers in our study. As shown in
Column Original Data-Pred. Time in Table IV and V, it spends
less time on Chrome than Firefox and Safari in predicting
the same amount of testing data. There is only one anomaly
occurs for VGG-16, which Chrome costs 284.62s longer than
the 191.45s on Safari.

2) Memory Performance: As shown in Table IV and V,
apart from prediction time, we also record the system memory
consumption on web platforms. System Memory consumption
is a more representative metric than prediction time, when
evaluating the supporting capability for DL software. Note that
we do not record the system memory on LeNet-1 and LeNet-
5, because their fleeting prediction processes make it hard to

817

As shown in Column System Memory, predicting on web
browsers are memory-consuming for all models. Among the
3 browsers, Safari consumes the largest system memory. And
according to our observation, the huge consumption of system
memory has affected the performance of the host computer.
Although the memory performance of Firefox and Chrome is
better than Safari, their memory overheads still reach several
GB size in most cases. For example, the memory overhead
is over 2.4GB when running ResNet-20 on the 3 browsers,
indicating the browsers’ capability of supporting DL software
is not satisfactory till now. Combined the metrics of prediction
time and system memory consumption, Chrome exhibits the
best performance in supporting DL tasks, which could be a
better choice when running DL applications on browsers.

Answer to RQ3: Different platform devices hold different
time and memory performance in capability of supporting
DL software. For mobile devices, Android devices take
much less time than iOS devices for simple DNN models.
However, as the complexity of the model increases, i0S
devices achieve better time performance. Moreover, the
capability of supporting DL software on mobile platform
is likely related to the types of specific DNN models. For
web platforms, Chrome generally outperforms others in
both prediction time cost and system memory consump-
tion in our study. The overall performance for web DL
software is unsatisfactory, especially running complex DL
models.

Challenge: How to reduce the time cost memory con-
sumption after model migration and quantization? How to
further test the performance of different platforms when
deploying and running DL software systematically?

D. RQ4: Accuracy of Migration and Quantization on Diff-
Platforms

In this section, we investigate the prediction accuracy after
DL model migration and quantization on different platforms
(i.e., mobile and web platforms).

1) Model Migration for Different Platforms: As shown in
Table III, IV and V, for each DNN model, we first compare
the accuracy of each model without quantization on different

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: The layer outputs of ResNet-20 on PC and
Chrome. Idx. refers to label index.

(a) Conv2D Layer (b) Dense Layer (Last Weight Layer)

[PC [Chrome [Idx. | PC [Chrome

1.78371441 1.78371441 0 3.94917989 | -1.03813171
-1.47859037 -1.47859049 1 -5.77517033 | -3.22286654

-] 0.57163376 0.57163370 s 2 5.10022831 3.76064563
E‘ -0.01394593 -0.01394595 E‘ 3 -2.74950528 1.56391966
<) -2.42872572 -2.42872572 <) 4 3.04771161 -1.47325206
5 e cee 5 5 -2.04092622 | 0.52656615
= 0.003037585 0.003037592 = 6 -6.07451582 | -0.17675309
~ -0.43665951 -0.43665954 ~ 7 8.46383476 2.48092437
0.08801108 0.08801108 8 -0.23961751 1.38548911
0.174682378 0.174682394 9 -3.68060803 | -3.80600476

mobile platforms (marked as No in Column Quan.). We find
that the DNN model size does not change a lot after migrating
the TENsSORFLOw model to mobile platforms. However, the
size of each model for web platform decreases by a large
margin.

Using the original test data, the accuracy of the mobile
migration is almost unchanged, the biggest change comes from
the data of iPhone 6S on VGG-16 (i.e., 84.19 vs. 84.20)
and iPhone 8 on ResNet-20 (i.e., 83.04 vs. 83.05). Similarly,
the accuracy of web migration generally shares the same
trend. However, a significant accuracy decline occurs on all
3 browsers for ResNet-20 (i.e., 77.08 vs. 82.66), as shown in
Table IV. To analyze and explain the reason for this severe
compatibility issue, we first compare the model structure and
weights between the two platforms (i.e., PC and web) and
confirm that they share the same properties of them. So we
further inspect the outputs of each layer for ResNet-20 on PC
and web browsers. Strikingly, given the same input image, we
find the outputs of each layer on PC and web browsers are
different. Moreover, the deeper the layer is, the more obvious
difference they exhibit.

We take Chrome as example to give an in-depth comparative
analysis on a certain image. As shown in Table Vla, for
Conv2D, the first weight layer connecting to the input, there
are only slight differences between Chrome and PC (see the
pair data marked by gray). When it comes to the Dense
layer (i.e., the last weight layer), the two platforms exhibit an
obvious distinction, leading to a misclassification on Chrome.
As shown in Table VIb, the PC model predicts the image
as label “7,” with the maximal output being “8.46383476.”
While Chrome predicts it as label 2, with the maximal output
being “3.76064563.” Other two browsers also show the similar
behaviours. The result indicates that browsers differ from PC
in inner-model computing, leading to the accuracy decline on
ResNet-20. Actually, similar compatibility issues also occur
on LeNet-1, LeNet-5, and VGG-16 when migrated from PC
to browsers, although the final prediction logic are not been
influenced. We reported these issues to the team of TENSOR-
FLow.Js, and the developers have acknowledged as a real bug
when WebGL handles 1 x 1 Conv2D kernels, and will fix it
in the new release version.

818

Answer to RQ4-1: The prediction accuracy on original
data has not been affected much by the migration process.
However, compatibility issues persist in model migration
from PC to browsers (e.g., 77.08 vs. 82.66 on ResNet-
20). Even worse, there still exists a obvious difference on
computation mechanism between PC and web browsers,
leading to a computing distinction of each layer within the
model, which has been acknowledged and confirmed by
the team of TENSORFLOW.JS. This result explains why the
industry has failed to meet expectations after model mi-
gration based on our online questionnaire, which provides
a reasonable explanation for the industrial developers.

2) Model Quantization for Mobile Platforms: Considering
the models marked as Yes in Column Quan. in Table III, the
model size decreases roughly 50% to 75% after quantization.
It saves much storage and memory for mobile devices, exactly
according with the intentions for designing quantization. The
quantization process does not significantly affect the prediction
accuracy on original testing data. Specifically, the biggest
change comes from HUAWEI Mate 20 X on ResNet-20
(i.e., 82.93 vs. 83.05). Even in some cases, the accuracy
of quantized model is higher. For example, the accuracy of
the quantized ResNet-20 model on other Android devices
increases by 0.01% and the quantized VGG-16 model on
iPhone 6S and iPad Pro rises by 0.03%.

Answer to RQ4-2: Quantization does not affect the pre-
diction accuracy obviously. Prediction on Android devices
after quantization is faster than the original model, and
the improvement is more significant for complex models.
Strikingly, quantization on iOS devices slows down the
prediction speed, which deserves further optimization for
CORE ML.

3) Migration and Quantization on Generated Data:
According to section IV-D1 and IV-D2, the migra-
tion/quantization does not affect the prediction accuracy obvi-
ously, there still exist some cases that the accuracy decreases,
especially for the quantization process. The results of accu-
racy in above two sections are based on the original testing
data. To further investigate the quality of migrated/quantized
models, we combine the existing tools TENSORFuUZzz [46] and
DEEPHUNTER [67] as data generator. We generate a large-
scale testing data by using MNIST and CIFAR-10 as inputs
to capture the differential behaviors between the PC model
and the migrated/quantized model. 25,000 mutated MNIST
data are created for LeNet-1 and LeNet-5, respectively. 28,000
mutated CIFAR-10 data are generated for ResNet-20 and
VGG-16, respectively. We generate 106,000 samples for both
mobile and browser in total.

We run the migrated models repeatedly on our generated
data for the two platforms. As shown in Table III, the
prediction accuracy of migrated models remain unaltered on
Android devices, consistent to the result on original testing
data. However, iOS devices go through a relatively obvious
accuracy decline on our generated testing data. For example,

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

iPhone 6S, iPhone 8 and iPad Pro achieve 76.28%, 77.03%
and 76.26% accuracy on ResNet-20 respectively, which are
less than the 77.70% on server. In addition, LeNet-1 and
LeNet-5 show the similar phenomenon, which indicates the
migration process on i0S devices suffers from reliability issues
on the generated data. As for web platforms, the accuracy of
ResNet-20 still drops more than 5% accuracy (i.e., 61.96%
vs. 68.97%), which agrees with the result on the original data
(i.e., 77.08% vs. 82.66%). The similar result on generated
data validates our findings about the compatibility issues in
migration process.

Strikingly, as shown in Column Generated-Acc. (in gray),
the accuracy of all quantized models has a significant decline,
indicating the reliability of a quantizated model is unsatisfac-
tory to date. However, the different results on the two datasets
(i.e., original testing data and generated testing data) show
that it is hard to trigger the reliability issue with the original
widely-used datasets. Last but not least, for iOS devices, the
accuracy of quantized models on VGG-16 only drops a little,
since we follows a different modes (i.e., 32-bits to 16-bits),
compared to other three models when reducing the floating
point. To investigate whether the accuracy of quantized models
is relevant to the value of nbits in float reduction, we further
obverse the ResNet-20 as an example, and configure the nbits
as 8 and 4. Results show that the accuracy gradually declines
with a decreasing bit value. The accuracy are 77.57%, 74.42%
and 8.53% corresponding to the floating point from 32-bits to
16-bits, 8-bits and 4-bits on iPad Pro, respectively.

Remarks for inspection of generated data: (1) The
accuracy of migrated models does not change in our eval-
uation on Android devices, while has a relatively obvious
decline on iOS devices. As for the web platforms, the
results (i.e., compatibility bugs) are consistent to that on
original data. (2) The accuracy of all quantized models has
a significant decline on our generated testing data, which
indicates the quantization process still suffers from severe
reliability issues tested by generated data. Meanwhile, the
decline is correlated with the value nbits when reducing
the floating point on iOS devices. (3) Furthermore, we
conduct statistical analysis [13] on the accuracy-dropping
cases in Column Generated after quantization of Table III.
The results give a p < 0.05, indicating there exists a
statistically significant difference in accuracy on generated
data, which reconfirms the reliability issues.

Challenge: How to detect and fix the compatibility is-
sues/bugs when migrating the trained models to web
platforms and iOS devices, and the reliability issues when
quantizing the trained models to mobile platforms?

E. Threats to Validity

(1) The DNN models and datasets we used might not
be complete, thus our findings are not general for all sit-
uations. But we select models with CNN/RNN architecture
from various domains, ranging from image classification to
textual sentiment analysis. Moreover, the datasets contain

819

diverse types, including gray, color images and textual review,
to reduce such a threat. (2) The selected versions of DL
frameworks in our study might not be complete. However,
we do not focus on the multi-version evolution, but on reveal-
ing challenges/issues that developers and researchers need to
consider in development and deployment processes. (3) Three
Android devices and three iOS devices with fixed versions are
used to study the prediction performance on mobile platforms.
We mainly focus on the performance change after the model
migration/quantization from PC to mobile devices, the impacts
of mobile hardware and mobile system version on prediction
performance are beyond the scope of this work.

V. RELATED WORK

In this section, we review the related work in two aspects:
study of deep learning frameworks and platforms. Actually, for
the studies of model migration and quantization on different
deep learning platforms (i.e., mobile devices and browsers),
to the best our knowledge, we take the first step towards
this research field. Several deep learning benchmarking stud-
ies have been done on the basic results of deep learning
frameworks [17], [18], [25], [59] such as the influence of
different hardwares and training accuracy and time, and also
compared different frameworks using their default configu-
ration settings and parameters [40]. However, there lacks a
systemic study on the different impacts that various deep
learning frameworks under the same runtime configuration or
same model weights/biases have on the deep learning software
development and deployment, and also lacks an investigation
on quantitative showing the differences of frameworks for
developers and researchers.

A. Study of DL Platforms

Kaoru et al. [47] made a survey on deep learning for mobile
multimedia and introduced the low-complexity deep learning
algorithms, an optimized software framework for mobile en-
vironments and the specialized hardware for supporting the
computationally expensive processes of deep network training
and inference. AI-Benchmark [2] proposed a Al performance
ranking for current mainstream mobile phones. Nine testing
tasks such as object recognition and face recognition are used
as criteria for performance comparison. Alsing et al. [15]
summarized the latest mobile object detection methods us-
ing TENSORFLOW LITE and analyzed the performance and
latency payoff of different deep learning models on mobile
devices. Wang et al. [65] provided an overview of the current
achievements about mobile deep learning technologies and
applications. Xu et al. [69] conducted an empirical study on
a large-scale Android apps to investigate how deep learning
technique is adopted in practice. Ma et al. [44] investigated
seven JavaScript-based deep learning frameworks and mea-
sured their performance gaps when running different deep
learning tasks on Chrome. However, we focus on the differ-
ence of supporting capabilities when deep learning tasks are
deployed on various web browsers (i.e., Chrome, Firefox, and
Safari).

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

B. Study of DL Frameworks

The rapid emergence of deep learning frameworks attracts
researchers’ attention on the performance of deep learning
frameworks. The most related work is from Liu et al. [40],
they conducted a comparative study of three frameworks (i.e.,
TENSORFLOW, CAFFE, and TorCH). However, they observed
from various aspects such as the impacts of default settings and
dataset-dependent default settings, and framework-dependent
default settings in deep learning frameworks, which are totally
different from us. Moreover, Bahrampour et al. [19] presented
a comparative study on four deep learning frameworks (i.e.,
CAFFE, NEON, THEANO, and TORCH). They evaluated these
frameworks from three aspects (i.e., extensibility, hardware
utilization, and speed). Shams et al. [58] analyzed CAFFE,
TENSORFLOW and APACHE SINGA over several hardware
environments. In order to investigate the performance, they
measured the time per training iteration and the number
of images trained with in a millisecond for comparison.
Kochura et al. [35] compared the basic features (i.e., GPU
support, GUI, operating systems, and language support) of
TENSORFLOW, DEEP LEARNING47J and H20O and conducted
throughout performance tests. In particular, H20 was tested
under single threaded mode and multi-threaded mode. Li et
al. [39] evaluated the energy efficiency of CNNs on CPUs
and GPUs by calculating the energy and power consumption
of ten deep learning frameworks (K20-TORCH, TX-CAFFE,
etc.). Shaohuai et al. [60] calculated the time per mini-batch
with different threads (i.e., 1, 2, 4, 8) and deep neural network
models (FCN-S, RESNET-50, etc.) within CAFFE, CNTK,
TENSORFLOW, MXNET and TORCH. Amershi et al. [55]
provided a description of how several Microsoft software engi-
neering teams work on developing Al applications. Apart from
the above work on deep learning frameworks, several work
focused on the bug detection of deep learning frameworks.
For example, Zhang et al. [70] studied 175 TENSORFLOW
bugs and examied the root causes of these bugs. Pham el
al. [51] proposed CRADLE, a new approach that cross-checks
multiple backends to find and localize bugs in deep learning
software libraries.

C. Deep Learning Testing

Some existing techniques have been proposed to detect the
problems/issues during deep learning development and de-
ployment. DeepXplore [50] and DeepGauge [42] proposed the
new testing criteria for deep learning testing. DeepTest [64],
DeepHunter [67] and TensorFuzz [46] proposed coverage-
guided testing techniques, which mainly focus on feedforward
neural networks. DeepStellar [26] is proposed to perform the
quantitative analysis for recurrent neural networks (RNN).
DeepMutation [43] adopts the mutation testing techniques to
evaluate the quality of test data for a deep neural network.
In addition, DiffChaser [68] proposed a differential testing
technique to capture the minor disagreements of two deep

820

neural networks. The approach can be applied to detect the
issues of deep neural networks caused by deep learning

platforms and frameworks.

In summary, compared to these studies on deep learning
frameworks and platforms, our study conducted a systematic
study including training performance and prediction accu-
racy when given the same runtime configuration or model
weights/biases, adversarial robustness, model migration and
quantization on different frameworks and platforms, and the
capabilities and reliability of supporting deep learning soft-
ware on different platforms. Moreover, we not only conduct
evaluations on the PC/Server platform, but also shift the testing
on the real mobile devices and web browsers. Meanwhile,
based on our study, we also reported several real deep learning
software bugs and provide useful guidance for deep learning
developers and researchers. In addition, our study motivates
many new research directions such as deep learning software
bug detection when model migrated and quantized under
different deep learning platforms and model conversion.

VI. CONCLUSION

In this paper, we initiate the first step to investigate how
existing deep learning frameworks and platforms influence
the development and deployment of deep learning software.
Our study provides many practical guidelines for developers
and researchers under different scenarios for different research
communities. Given the same model weights/biases, an obvi-
ous accuracy decline occurs when the model is converted from
one framework to another. The compatibility and reliability
issues and accuracy loss would arise when migrating and quan-
tizing a deep learning model from the PC platform to other
platforms, and the accuracy loss is due to several deep learning
software bugs we found. In addition, the universal deep
learning solutions across platforms are desperately on demand,
especially for mobile and web platforms. This study makes
the first step along this direction towards building universal
deep learning software across various platforms based on our
practical guidelines. We hope our work draws the attention of
deep learning software community, altogether to address the
urgent demands towards the new challenges in deep learning
software development and deployment processes.

VII. ACKNOWLEDGMENTS

This research was partially been supported by the National
Science Foundation of China (No. 61872262, 61572349). It
was also sponsored by the National Research Foundation,
Prime Ministers Office, Singapore under its National Cyber-
security R&D Program (Award No. NRF2018NCR-NCRO005-
0001), National Satellite of Excellence in Trustworthy Soft-
ware System (Award No. NRF2018NCR-NSOE003-0001) ad-
ministered by the National Cybersecurity R&D Directorate,
and JSPS KAKENHI Grant 19K24348, 19H04086, and Qdai-
jump Research Program NO.01277.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]
[3]

[4

=

[5

—

[6

—

[7

—

[8]
[9]
(10]

(11]
[12]
(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

REFERENCES

(2018) AI bots trained for 180 years a day to beat humans
at Dota2. [Online]. Available: https://www.theverge.com/2018/6/25/
17492918/openai-dota-2-bot-ai-five- Sv5-matches/

(2019) AI-Benchmark. [Online]. Available: http://ai-benchmark.com/
(2019) DNN. [Online]. Available: https://en.wikipedia.org/wiki/Deep_
learning#Deep_neural_networks

(2019) DNN Study. [Online]. Available: https:/sites.google.com/view/
dnnstudy/

(2019) GRU. [Online]. Available: https://en.wikipedia.org/wiki/Gated_
recurrent_unit

(2019) IMDb Dataset. [Online]. Available: https://www.imdb.com/
interfaces/

(2019) LSTM. [Online]. Available: https://en.wikipedia.org/wiki/Long_
short-term_memory

(2019) Model Quantization. [Online].
nervanasystems. github.io/distiller/quantization/
(2019) Online Questionnaire. [Online]. Available: https://forms.gle/

Available: https:/

MCnZ7ZYDDAdTKXqx7/

(2019) Python ValueError: operands could not be
broadcast together with shapes. [Online]. Avail-
able: https://stackoverflow.com/questions/24560298/python-numpy-

valueerror-operands-could-not-be-broadcast-together- with-shapes
(2019) TextCNN. [Online]. Available: https://github.com/DongjunLee/
text-cnn-tensorflow

(2019) Unsupported Operation. [Online]. Available: https:/github.com/
tensorflow/tensorflow/issues/15805/

(2019) Wilcoxon Rank Sum Test. [Online].
en.wikipedia.org/wiki/MannWhitney_U_test

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in /2th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265-283.

O. Alsing, “Mobile object detection using TensorFlow Lite and transfer
learning,” 2018.

Apple. (2019) Core ML. [Online].
developer.apple.com/documentation/coreml

A. A. Awan, H. Subramoni, and D. K. Panda, “An in-depth per-
formance characterization of CPU-and GPU-based DNN training on
modern architectures,” in Proceedings of the Machine Learning on HPC
Environments. ACM, 2017, p. 8.

S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Com-
parative study of deep learning software frameworks,” arXiv preprint
arXiv:1511.06435, 2015.

, “Comparative study of caffe, neon, theano, and torch for deep
learning,” arXiv, 2016.

W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39-57.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722-2730.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-
to-end deep learning benchmark and competition,” Training, vol. 100,
no. 101, p. 102, 2017.

X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
model-based quantitative analysis of stateful deep learning systems,” in

Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software

Engineering. ACM, 2019, pp. 477-487.

Available: https://

Available: https:/

821

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45

[46]

[47]

[48]

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples (2014),” arXiv preprint arXiv:1412.6572, 2014.

Google. (2019) TensorFlow Lite. [Online]. Available: https:
/Iwww .tensorflow.org/mobile/tflite
—_ (2019) TensorFlow.js. [Online]. Available: https:/

www.tensorflow.org/js

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222-2232, 2017.
M. Gupta, L. Jin, and N. Homma, Static and dynamic neural networks:
from fundamentals to advanced theory. John Wiley & Sons, 2004.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

D. Jurafsky and J. H. Martin, Speech and language processing. Pearson
London, 2014, vol. 3.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97-117.

Y. Kochura, S. Stirenko, O. Alienin, M. Novotarskiy, and Y. Gordienko,
“Comparative analysis of open source frameworks for machine learning
with use case in single-threaded and multi-threaded modes,” in Computer
Sciences and Information Technologies (CSIT), 2017 12th International
Scientific and Technical Conference on, vol. 1. 1EEE, 2017, pp. 373—
376.

N. Krizhevsky, H. Vinod, C. Geoffrey, M. Papadakis, and A. Ventresque,
“CIFAR-10 dataset,” http://www.cs.toronto.edu/kriz/cifar.html, 2014.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. of the IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998.

Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
1998.

D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus,”
in Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications
(SustainCom)(BDCloud-Social Com-SustainCom), 2016 IEEE Interna-
tional Conferences on. 1EEE, 2016, pp. 477—484.

L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and Q. Zhang, “Benchmarking
deep learning frameworks: Design considerations, metrics and beyond,”
in IEEE 38th International Conference on Distributed Computing Sys-
tems (ICDCS). 1EEE, 2018, pp. 1258-1269.

L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 20719
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 1EEE, 2019, pp. 614-618.

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 120-131.

L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep learning
systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). 1EEE, 2018, pp. 100-111.

Y. Ma, D. Xiang, S. Zheng, D. Tian, and X. Liu, “Moving deep
learning into web browser: How far can we go?” arXiv preprint
arXiv:1901.09388, 2019.

Microsoft. (2019) MMdnn. [Online]. Available: https://github.com/
Microsoft/MMdnn

A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “TensorFuzz:
Debugging neural networks with coverage-guided fuzzing,” in Pro-
ceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA: PMLR,
09-15 Jun 2019, pp. 4901-4911.

K. Ota, M. S. Dao, V. Mezaris, and F. G. De Natale, “Deep learning
for mobile multimedia: A survey,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13, no. 3s,
p. 34, 2017.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning systems
using adversarial examples,” arXiv preprint, 2016.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” openreview, 2017.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1-18.

H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: Cross-backend
validation to detect and localize bugs in deep learning libraries.”

Qualcomm. (2019) Snapdragon. [Online]. Available: https:
/Iwww.qualcomm.com/snapdragon
A. C. M. Quantization. (2019) Core ML Quantization.

[Online]. Available: https://apple.github.io/coremltools/generated/
coremltools.models.neural_network.quantization_utils.html

J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python
toolbox to benchmark the robustness of machine learning models,”
arXiv preprint arXiv:1707.04131, 2017. [Online]. Available: http:
/larxiv.org/abs/1707.04131

A. B. Saleema Amershi, H. G. Christian Bird, Rob DeLine, B. N.
Ece Kamar, Nachiappan Nagappan, and T. Zimmermann, “Software
engineering for machine learning: A case study,” in Proceedings of the
41th International Conference on Software Engineering. ACM, 2019.
Samsung. (2019) Samsung Exynos 9. [Online].
Available: https://www.samsung.com/semiconductor/minisite/exynos/
products/mobileprocessor/exynos-9-series-9820

F. Seide and A. Agarwal, “CNTK: Microsoft’s open-source deep-
learning toolkit,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2016, pp. 2135-2135.

S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different HPC architectures,” in Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference
on. IEEE, 2017, pp. 1389-1396.

A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, “A com-
parative study of open source deep learning frameworks,” in 2018 9th
International Conference on Information and Communication Systems
(ICICS). 1EEE, 2018, pp. 72-77.

S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep

822

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

learning software tools,” in Cloud Computing and Big Data (CCBD),
2016 7th International Conference on. 1EEE, 2016, pp. 99-104.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
TensorFlow. (2019) Post-training Quantization. [Online]. Available:
https://www.tensorflow.org/lite/performance/post_training_quantization
——. (2019) Quantization-aware Training. [Online]. Avail-
able: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
contrib/quantize/README.md

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering. ACM, 2018,
pp. 303-314.

J. Wang, B. Cao, P. Yu, L. Sun, W. Bao, and X. Zhu, “Deep learning
towards mobile applications,” in 2018 IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS). 1EEE, 2018, pp.
1385-1393.

Wiki. (2019) Kirin 970. [Online]. Available: https://en.wikichip.org/
wiki/hisilicon/kirin/970

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2019, pp. 146-157.

X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser:
Detecting disagreements for deep neural networks,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 5772-5778. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/800

M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep
learning apps on smartphones,” arXiv preprint arXiv:1812.05448v2,
2018.

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on TensorFlow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2018, pp. 129-140.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:21:02 UTC from IEEE Xplore. Restrictions apply.

